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and in fact used five. By utilizing the fine splitting of 
layer lines due to the imperfect repeat of the TMV helix 
(Makowski, 1980) and the small differences in splitting 
among the derivatives, we have solved the same 
structure using only two derivatives, obtaining an 
electron density map of comparable quality. 

Structures other than TMV often have more Bessel 
orders contributing to a layer line at a given resolution, 
and use must be made of all available information to 
solve their structures. Preparation of heavy-atom 
derivatives for use in fiber diffraction is difficult, since 
most fiber structures are unusually sensitive to 
chemical disturbance [for example, microtubules 
(Luduefia, 1979)] or have surfaces with a specific 
protective function (as in viruses) and so are very 
resistant to modification. Furthermore, location of 
heavy atoms in a helical structure presents special 
difficulties (Holmes, Mandelkow & Barrington Leigh, 
1972; Holmes et al., 1975). Any method such as the 
one presented here which increases the information 
available from each derivative will greatly extend the 
resolution attainable in structural studies using fiber 
diffraction. 

This work was supported by NIH grants GM25236, 
CA24407 and CA29522, and by an Alfred P. Sloan 
Foundation Fellowship to LM. 
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Abstract 

The problem of dynamical Bragg diffraction from a set 
of Bragg planes in a material circular in the diffraction 
plane is solved by a combination of a Riemann-function 
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technique and numerical integration of the Takagi- 
Taupin equations. In regions affected by non-Laue 
surfaces the solution is compared with an approximate 
Green-function method based on truncation of small 
arcs of the circle. The bright-field and dark-field 
intensity profiles are determined only by the radius of 
the circle compared to the extinction distance, and on 
the absorption parameters. The dependence of the 
profiles on these parameters is studied. 

© 1982 International Union of Crystallography 
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1. I n t r o d u c t i o n  

The dynamical theory of X-ray diffraction was first 
developed for infinitely broad plane waves incident on 
infinitely broad plane crystal surfaces in both the Bragg 
case (Darwin, 1914a,b) and the Laue case (Ewald, 
1916a,b, 1917). In the diffraction of X-rays from a 
finite crystal, however, it is necessary to consider a 
problem in which the boundary conditions on the wave 
amplitudes at the crystal surface vary over the surface, 
which may be divided into separate regions as follows: 
If the incident wave impinges on a surface and both the 
transmitted and diffracted waves propagate into the 
crystal, the surface is known as a Laue surface, whereas 
if the diffracted wave emerges from the same surface it 
is known as a Bragg surface. If a surface is such that 
the forward propagating wave in the crystal emerges 
from it, but the Bragg diffracted wave does not, the 
surface is termed a rear surface. The diffraction 
problem may be formulated mathematically as that of 
solving the Takagi-Taupin equations, 

~ o  
- - = i F ,  q/, (1) 
c3s 0 

cg~l 
= iF1 ~o (2) 

Os x 

subject to the boundary conditions 

and 

~0 = ¢P0 

C~Vl 
- i F  1 

OSl 

on Bragg surfaces, 

(3) 
(4) 

on Laue surfaces 
~ = (6) 

V/I = i } (7) c0v0 _ on rear surfaces, 

~9s0 (8) 
where ~'0 and V~ are the amplitudes of the forward- 
propagating (bright-field) and diffracted (dark-field) 
beams, s o and S l are coordinates in the directions of 
propagation of the crystal waves and F~ is a coupling 
coefficient defined by 

F~ = -zcl KI Cz~. (9) 

In (9), K represents the wave vector of the plane wave 
incident on the crystal, X~ is the first-order Fourier 
coefficient of the crystal polarizability and C is the 
polarization factor, which for electromagnetic waves is 
unity when the electric-field vector is perpendicular to 
the diffraction plane and is equal to cos 20 s when it lies 

in the plane (08 is the Bragg angle). The quantity ~o is 
defined by 

~0 = ~v0 exp(--2z~i[K-- k0].re), (10) 

where ~v 0 is the amplitude of the incident plane wave, k o 
is the wave vector of the forward-propagating crystal 
wave (making an angle 0 B with the Bragg planes) and r e 
is a position vector on the wave-input surface. 

The most elegant solution of this problem is by 
writing (1) and (2) as telegraphy equations, 

02 % 
+ ~ ~'i = 0, where i = 0, 1, (11) 

8s 0 8s 

and by use of Riemann- (or Green-) function tech- 
niques. The diffracted beam amplitude at any point P in 
the crystal depends only on diffraction processes within 
a domain of dependence or Takagi fan (Takagi, 1969). 
The form of the Green function depends on the nature 
of the crystal surface intersecting the Takagi fan. When 
this is purely a Laue surface, Takagi (1969) pointed out 
that the Green function is the standard Riemann 
function well known in the theory of the telegraphy 
equation (Courant & Hilbert, 1966) and the form of 
this function is independent of the shape of the surface. 

A very useful extension of this theory for the case 
where the crystal surface intersecting the Takagi fan 
may consist partly of Bragg and rear surfaces was 
discovered by Uragami (1971). Defining Green func- 
tions vi (i = 0, 1) satisfying the (self-)adjoint equation 

~2v~ 
~ + / ~  v i =  O, (12) 
3So 8s~ 

subject to the boundary conditions 

v 0 = v I = 1 (13) 

on the lines through P parallel to the s o and s I axes, 

c°/) l 
Vo = 0, = 0 (14) 

c0s o 

on Bragg surfaces, and 

cqv0 
- 0 ,  v 1 = 0 ( 1 5 )  

tgs~ 

on rear surfaces within the Takagi fan, Uragami (1971) 
showed that it is possible to find expressions for ~0(P) 
and ~q(P) in terms of these functions.* Uragami (1971) 
further went on to give explicit forms for the v i when the 
Bragg and rear surfaces are planar. The validity of this 
solution was confirmed by the work of Saka, Katagawa 
& Kato (1972a,b, 1973) who used a method based on 
the Fourier decomposition of crystal waves. When the 
Bragg and rear surfaces are not planar, however, no 

* It will be noted that, unlike the situation in the purely Laue case, 
the Green functions vi depend on the shapes of the Bragg and rear 
surfaces via the additional boundary conditions (14) and (15). 
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Green functions have yet been found satisfying con- 
ditions (14) and (15). 

A form of finite crystal of great interest due to its 
frequent natural occurrence is the cylinder. 

An approximate solution of the diffraction problem 
in this case has been given by Saldin & Buckley-Golder 
(1977) and Olekhnovich & Olekhnovich (1980), based 
on replacing small curved regions of Bragg and rear 
surfaces by planes. 

It is clear of course that for large Bragg angles this 
approximation is unlikely to be valid. However, it is of 
interest whether the approximation is reasonable for 
relatively small Bragg angles. In the computations of 
this paper we have taken the value of 0 n = 9.8 ° 
appropriate to the case of Mo Kal X-rays diffracted by 
(111) planes in copper. Calculations were performed of 
the bright- and dark-field intensity distributions from a 
cylindrical crystal of copper with the (111) diffracting 
planes parallel to the axis of the cylinder. Two methods 
were used; one the Green-function technique, which is 
exact when the wave-entrant surface is purely of Laue 
type, and approximate otherwise; the other was based 
on the numerical solution of the Takagi-Taupin 
equations for the amplitudes affected by the Bragg and 
rear surfaces. The approximate Green-function method 
(for Bragg and rear surfaces) was attempted only for 
dark field. Absorption was incorporated by allowing Z0 
and Zl, the zero and first-order Fourier coefficients of 
the polarizability, to become complex. 

2. The Green-function method 

The geometry of the diffraction problem is illustrated in 
Fig. 1, which represents the cross section perpen- 

A A3 
~ Q 

A ~ r ~ ~ ~ 2  R2 

SO ~- _. 

Fig. 1. Cross section of the cylindrical crystal. The diffraction 
geometry. 

dicular to the axis of a cylindrical crystal. We consider 
the incidence of a plane wave of infinite width with 
wave vector K making a Bragg angle 0 n (in this paper 
we restrict ourselves to the case of 0 n < 30 °) with a set 
of crystal planes parallel to the axis of the cylinder. 
Bragg-diffracted waves with wave vectors k 0 and k 1 will 
be generated. It is clear from the geometry of the figure 
that the incident wave enters the crystal at all points on 
the semicircle R . . .  A m . . .  T O ( m  = 1 . . . .  , 5 )  while the 
diffracted wave leaves the crystal at all points on the 
semicircle R 0 ... P ,  ... T (n = 1, ..., 4). The forward 
propagating wave emerges from the crystal on the 
semicircle T O ... P ,  ... R. In Uragami's (1971) 
nomenclature, the arc R oR would be a Bragg surface, 
ToR o a Laue surface and TT 0 a rear surface. 

If 0 denotes the position of the axis of the cylinder 
and Pn the position of an arbitrary point on the 
wave-exit surface, let 0P ,  make an angle 0 with the 
Bragg planes. Then we need consider separately four 
ranges for P ,  characterized by the index n (= 1, ..., 4) 
and defined by the following: 

n = 1 : - -n /2 - -  0 B < 0 _< --~z/2 + O n (16) 

n = 2: - -~/2  + 0 n < 0 < - n / 2  + 30 n (17) 

n = 3 : - -n /2  + 30~ < 0 < n / 2 -  30n (18) 

n = 4 : n / 2 - - 3 0 n  < O<_n/2-O n. (19) 

The need to satisfy different combinations of the 
boundary conditions (3)to (8)and (13)to (15)in each 
of these regions leads to different expressions for ~,o(P,) 
and ~,I(P,) in each case. For simplicity the equations 
quoted below are for a non-absorbing crystal. Ab- 
sorption may be incorporated by allowing Z0, ZI, F0,/'1, 
k 0 and k I to become complex. If we allow the extra 
subscripts r and i to denote the real and imaginary parts 
respectively of these quantities it can be shown that (see 
e.g. Takagi, 1969), 

I K - ko,rl = --Zo,,.K/2 (20) 

and that k0, i (= kg, i ) is a vector in the direction of the 
Bragg planes. When absorption is present the quantity 
~o(7) in the expressions below takes the form 

~0(Y) = exp {inIXo,rIKr cos(n/2 -- 0 B + y) - - . . .  

--nl Zo, tlKr 
c-- sT, cos( /2 + 

+ KrcosO , (21) 
C O S  0 B 

where y is the angular coordinate defined in Fig. 1 and r 
is the radius of the cylinder. 
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(A) Region n -- 3 

This is the simplest of the cases, where we have 
Laue-case diffraction and the wave amlitudes at P3 are 
given in terms of the Riemann functions, 

vo= v, = w f =  w ( = J o l a ( S  ~ S f ) m ] ,  (22) 

where 

a = - 2 G ,  So ~ = s ° -  s ,  S f  = s o - s ,  (23) 

and Jo is the zero-order Bessel function (see e.g. 
Courant & Hilbert, 1966; Takagi, 1969; Uragami, 
1971). 

The expressions for the amplitudes are 

y(A 1) 

~'o(P3) = ~Po( A 1 ) -  -- [ 6ov'-''~0 (/10(7) 
d 

~,(A~) 
x cos (zd2 + O n -- 7) r d7 (24) 

),(A,) 

VIi(P3) = F1 : Vl ~0(7) 
7(As) 

x cos(zr/2 + 0 s -- 7 )  r dT.  (25) 

0 o The coordinates of P ,  are (So,S 0 and those of the 
general point Q which lies on the cylindrical wave-input 
surface between A 1 and A 5 are (So,S1). If the origin of 
the coordinates is defined to be at R 0, we may write 

s o = r{sin(O + On) 

s o = r {sin (O n - 8 )  

+ 1 }/sin 20s, 

- cos 20n}/sin 20 B 
(26) 

Then 

s o = r{cos(y + 0~) + 1 }/sin 20~, 

s I = - r { c o s  ( 0 ~ -  y ) -  cos 20~}/sin 20 n. 
(27) 

7(A 1)= zc /2-  0 + 20 n (28) 

7(A 5) = rr/2 - 8 -  20 B (29) 

~ o ( Y ) = e x p { - i F o r c o s ( z d 2 - O n  + 7)}, (30) 

where 

Fo = rdfCx0. (31) 

(B) Region n = 4 

In the calculation of the diffracted-beam amplitude at 
P4 we notice that the part ToA 4 of the crystal surface 
within the Takagi fan is a Laue surface and the part 
T 1 T O is a rear surface. If we replace the arc 7"1 T O by the 
chord T~T o , we find that the Green function v~ 
satisfying the boundary conditions (13) to (15) is the 
composite one consisting of the function w~ of (18) in 
the region T 1 T z A 4 P4 and the function 

v, = wf + wf ~, (32) 

where 

W f  K--~ --Jo[a(Sg K alE) 1/21 (33) 

S~X= ,~0 s° + s ~ ' -  s, (34) 

S f K  = , ~ I  SO "4- S bl - S O (35) 

sin(-~z/4 + 30ff2 + 8/2) 
:J~'o = 1/~'1 = (36) 

sin ( 0 f f 2 -  ~r /4-  0/2) 

2r cos 0 n sin{½(3zd2 - 0 n - 8)} 
Sbo I = (37) 

sin{½(-zc/2 + 30 n + 8)} 

- 2 r  cos 0 n sin{zd4 + 0n/2 + 8/2} :,1 = (38) 
sinirc/4 + 0 n / 2 - 0 / 2 }  

in the region T 1 T o 7"2. (7'2 7'1 is in the direction of the s o 
axis.) We may write { ;,(T,) } 

¢I (P4)=F 1 J" w ~ +  : ( w ~ + w ~  ~) 
Y(Tz) r(To) 

x ~0(Y) cos(7d2 + 0 n - 7) r dT, (39) 

where 

Y(To) = 0~ (40) 

y(T2) = - r d 2  + 40 n + 0 (41) 

y(A4) = re /2 -  0 + 2 G. (42) 

Equation (39) differs from the corresponding ex- 
pression given by Olekhnovitch & Olekhnovitch (1980) 
which appears to contain only the Green function w~ ~. 
Their Green function does not satisfy the relevant one 
of the boundary conditions (15). 

(C) Region n = 1 

The point P1 lies on a Bragg surface and the 
wave-input surfaces within its Takagi fan consist of a 
Laue surface A 2 R  o and a Bragg surface R o P  ~. If we 
replace the arc R o P  ~ by the chord R o P  ~, v t becomes 
Uragami's Green function corresponding to a planar 
Bragg surface R o P  1 and may in this case be written 

aft J2[a( SK Sf)  1/21, 
, : ,  = w f ' "  = ,'o s-y (43) 

where a = -2/ '1,  J2 is the second-order Bessel 
function, and 

sin(--Tr/4 + 30n/2 -- 0/2) 
?..o= 1/~, = 

sin(0n/2 + re/4 + 0/2) 
We may then write 

(44) 

(R.) 

~q(P,) =/ '1  .f vl ~0(Y) cos(zff2 + 0 s -- y) r d 7 
; ' ( A , )  

s~(P~) 

J" v 1 ¢Po(Sl) ds l, 
sI(Ro) 

(45) 
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where the integral over the Laue surface is performed 
over the angular coordinate ~, and that over the Bragg 
surface with the linear coordinate s~. In (28), 

7(R0) = n -  OB (46) 

?(A2) = ~r /2-  8--  20 B (47) 

s ~ ( P O = r { s i n ( O n - - O ) - - c o s Z O n } / s i n  20B (48) 

s , (R  o) = 0 (49) 

q~o(S~) = exp{n/ZoK[--r sin 20 n 

+ s~(~, + cos 20~)1 }. (50) 

(D) Region n = 2 

In the case of the point P2 we see that the crystal 
surfaces within the corresponding Takagi fan consist of 
a Laue surface A 3 R  o and a Bragg surface R o R  1. If we 
replace the arc R o R  1 by the chord Ro RI ,  then we find 
that the Green function v 1 satisfying the boundary 
conditions (16) and (17) is the composite function Vl = 
w~ in the region R I R 2 A 3 P  2 and the function 

/31= Wf + Wf 1U (51) 

in the region R 1RoR2, where 

S f l .  FlU FI 1/2 WFIm= ¢ ~ j E [ a ( S  ° $1 v) l (52) 

S ~ l U =  ~ o S ° -  S 1 (53) 

S f l U = ~ I S O - - s  0 (54) 

sin (re/4 + On~2 + 8/2) 

~o = 1/~1 = sin(3On/2 _ n / 4 -  8/2) (55) 

We may then write 

y(R2) Y(R0) ) 
gi I (P2)=F 1 f w f +  f ( w f + w f l t 0  

y(A3) )'(R2) 

x Oo(Y) cos(re/2 + 0 s -- y) r d? 

sl (Ro) 
+ F  1 f ( w f + w f  ltr) O0(s l )ds 1, (56) 

sI(RI) 
where 

7(A3) = re~2-  8 - -  20 n (57) 

7(R2) = 3zc/2-  40 B + 0 (58) 

y(Ro) = re -  0 s (59) 

s~(Ro) = 0 (60) 

S l ( R 1 ) = r { s i n ( O s - - O ) - - c o s 2 O B } / s i n 2 O B .  (61) 

Expression (56) also differs from the corresponding one 
of Olekhnovitch & Olekhnovitch (1980), whose Green 
function w~ w does not satisfy the relevant one of the 
boundary conditions (14). 

3. Direct numerical solution of Takagi-Taupin 
equations 

The calculation of the diffracted-beam amplitudes by 
the Green-function method described above has the 
advantage that the beam amplitudes are given in terms 
of line integrals over the wave-input surfaces within the 
relevant Takagi fan. In the case of a crystal for which 
any Bragg or rear surfaces are curved, however, this 
method has the disadvantage that it is necessary to 
truncate the curved surfaces to produce planar ones so 
as to enable the use of Uragami's (1971) Green 
functions. In order to overcome this difficulty and to 
investigate the validity of this approximation, the 
diffracted-beam amplitudes in regions n = 1, 2 and 4 on 
the wave-exit surface were computed by direct 
numerical integration of the Takagi-Taupin equations 
over regions of the crystal affected by the Bragg and 
rear surfaces. These regions are shown in Fig. 2 as 
cross-hatched by a uniform grid of intersecting charac- 
teristic lines parallel to the s o and Sl axes. The 
Takagi-Taupin equations, 

cos o 
+ Foi gio = (--rli + iFlr) gil (62) 

0u/1 

cgs~ 
+ Foi gio = ( - -Fu + iFa~) gio, (63) 

were replaced by the finite difference equations, 

giC ° __ gig + Foi ( gic + gig) = (--1"1i + iFlr) 
A 2 

gif - gi: (gif + gil ~) 
+ /-'0i : (--/"1i q- irlr) 

A 2 

(gif + gic) 

2 

(64) 

(gio ~ + gig) 
2 

(65) 

I 

I 
/ \ Ro 

Fig. 2. Integration mesh used in numerical solution of Takagi- 
Taupin equations. 
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relating the beam amplitudes at typical neighbouring 
points A, B and C at the vertices of an element of the 
grid when A, B and C are all within the bulk of the 
crystal (A = A C  = BC). Thus knowledge of the beam 
amplitudes at A and B enable those at C to be 
determined and the beam amplitudes throughout the 
cross-hatched regions may be found. Modifications to 
(60) and (61) are needed only when a crystal surface 
intersects two of the sides of the triangle ABC. These 
eases are illustrated in Fig. 3: 

Case (a): Surface intersecting A C and B C  

In this case the point C is assumed to lie on a Laue 
surface. The beam amplitudes at C are assigned the 
values ~0 = ~0 and ~c = 0. 

Case (b): Surface intersecting AB  and BC 

This can happen when the intersecting surface is 
either Laue or Bragg and we take ~,0 c = ~0 and ~,c is 
evaluated from (64). 

Case (c): Surface intersecting AB  and A C 

In this case the intersecting surface is either a Laue 
or a rear surface and we assign ~,c = 0 and evaluate ~,c 
from (65). 

4. Results of the calculations 

Shown in Fig. 4 are the calculated intensity profiles, for 
a range of diameters of crystal, expected on a film 
placed along B F  o (bright field) and D F  1 (dark field) in 
Fig. 1. If one imagines an X-ray topography experi- 
ment, the intensity profiles along BF o and D F  1 represent 
the bright- and dark-field section topographs expected 
from a wide coherent X-ray beam incident over the 
whole of the cross section of the cylinder. The 
calculations giving rise to the profiles of Fig. 4 assume 
no absorption and in this case the form of the profiles 
depends only on the value of the parameter N = F 1 d/n, 
where d (= 2r) is the diameter of the cylinder, and on 
the size of the Bragg angle 0 B (which here is assumed to 
be 0.171 rad). When N is equal to an integer, d is equal 

c c c 

(a) (b) (c) 

Fig. 3. Intersection of the crystal surfaces with various elements of 
characteristic mesh. 

to a whole number of extinction distances and when this 
quantity is half-integral d is equal to an odd number of 
half-extinction distances. 

The bright-field intensities are high near the centre of 
the profile in the former case and low in the latter case. 
The converse behaviour is found for the dark-field 
profiles, indicating a Pendellosung-type oscillation of 
intensities between the coupled beams for the parts of 
the profile determined essentially by Laue-case diffrac- 
tion. The solid curves represent the results of the more 
accurate calculations (i.e. those using the Riemann- 
function method for Laue-case diffraction and the 
numerical solution of the Takagi-Taupin equations for 
Bragg-case and rear-surface diffraction). Where they 
deviate from these profiles the dotted curves are the 
result of the approximate Green-function calculation 
for dark-field intensities affected by Bragg-case and 
rear-surface diffraction. 

The two curves are virtually coincident for rear- 
surface diffraction but deviate greatly for Bragg-case 
diffraction for N > ½. Both curves predict a peak in the 
dark-field profiles for intensities affected by Bragg-case 
diffraction, and this is not unexpected since it is known 
that when the Bragg surface is planar and infinite all of 

I I 

D F 1 B F o 

1.01 
D F 1 B F 0 

T I 

D F~ 
t I  

D F~ 

1.0[ 

F0 
I 

B & 

Fig. 4. Intensity profiles due to diffraction from cylinder. Shown are 
dark-field profiles (along DF 0 and bright-field (along BFo). The 
vertical dotted lines separate intensities determined by pure 
Laue-case diffraction from those affected by non-Laue edges. In 
the latter case the solid profiles depict the numerical solution and 
the dotted profiles the approximate Green-function solutions. 
Zero absorption. Unit incident intensity. (a) N = ½, (b) N = 1, (c) 
N= 1½, (d) N= 2. 
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the incident power is transferred to the diffracted beam. 
The height of the peak predicted by the numerical 
solution is considerably greater than that of the 
approximate Green function solution. A further point of 
interest is that for N = 2 the bright-field profile also 
acquires a narrow peak near F 0. Both Bragg peaks may 
acquire intensities greater than that of the incident 
beam. However, the sum of the areas under the bright- 
and dark-field profiles (solid lines) is constant, indepen- 
dent of the value of N, and equal to the area under the 
incident beam's (flat) profile, thus confirming power 
conservation for this no-absorption diffraction process. 

The absence of a Bragg peak in the profile with the 
lowest value of N indicates a beginning of a transition 
to the regime of kinematical diffraction, where there is 
no important distinction between the Laue and Bragg 
cases, and where the dark-field amplitude at any point 
is proportional to the path length of the diffracted beam 
in the material. Indeed, for lower values of N the 
dark-field profiles (not shown) bore out this prediction 
quite well, and were symmetric about the I axis. 

The effect of absorption (both normal and 
'anomalous') on these profiles is illustrated in Fig. 5. 
The main effect is to flatten out the profiles (i.e. to 
reduce the peaks and elevate the dips in the profile). The 
latter consequence is of course due to 'anomalous' 
absorption (or transmission), that is, essentially the 
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Fig. 5. Same as Fig. 4 except that the calculations were for an 
absorbing crystal with FoJF1,. = 0.0567 and F u = For 

Borrmann effect. The absorption parameters used were 
those appropriate to (111) diffraction of Mo Ka~ 
radiation (of wavelength 0.0709 nm) from a copper 
crystal (i.e. the ratio Foi/Fl,. was taken to be 0.0567 and 
it was assumed that Fli =Fot). 

The shapes of the profiles for larger values of N are 
illustrated in Fig. 6. Shown here are bright- and 
dark-field profiles for N = 4 and 4.5. Absorption was 
included in the calculations. As may be expected, 
several fringes are present in the profiles, especially 
towards the edges. The Bragg peaks appear to consist 
of a broad envelope containing several narrow fringes. 
The intensities near the centres of the profiles are 
similar for bright and dark fields and are also relatively 
insensitive to the value of N as this quantity is varied by 
an integer. These results are of course expected as a 
consequence of 'anomalous' absorption. For large 
values of N it is no longer necessarily the case that the 
bright-field intensity is high for integral N and that the 
dark-field intensity is high for half-integral N. This is 
due to the large range of lengths of diffraction paths 
(relative to an extinction length) within the relevant 
Takagi fan. 

5. C o n c l u s i o n s  

When a broad beam of coherent radiation is diffracted 
from a set of Bragg planes in a material with circular 
cross section in the diffraction plane the bright- and 
dark-field intensity profiles depend on the size of the 
circle relative to the extinction distance. When the 
diameter (d) of the circle is significantly less than half 
an extinction distance, ~1, the features of the bright- and 
dark-field profiles are in broad agreement with the 
predictions of the kinematical theory. When d > ½~a, 
however, the dynamical theory predicts a significant 
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Fig. 6. Intensity profiles for (a) N = 4 and (b) N = 4½. Absorption 
parameters as in caption of Fig. 5. The curves show results only 
from the numerical integration of the Takagi-Taupin equations. 
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difference between Laue-case and Bragg-case diffrac- 
tion. Rays affected by the Bragg surface give rise to a 
high-intensity region on dark-field profiles. The profiles 
of this peak are not well predicted by an approximate 
Green-function method based on truncated planar 
Bragg surfaces. As d increases so as to be much greater 
than about ~1, the Bragg peak begins to consist of 
several narrowly-spaced fringes contained within a 
broad envelope. 

There is some experimental evidence for the presence 
of such Bragg peaks on X-ray topographs of cylindrical 
crystals (see e.g. Saldin & Buckley-Golder, 1977). In 
the instance cited above the diameter was of the order 
of a hundred extinction distances. The narrow Bragg 
fringes expected were smeared out to form a wide high- 
intensity region near FI on the photographs in this case 
since they were projection (or traverse) topographs. 
One method of computing the form of such peaks 
would be by means of an extension of our calculations 
and the use of the reciprocity theorem (Kato, 1968). 

The author wishes to thank Drs I. M. Buckley- 
Golder and M. J. Whelan FRS for introducing him to 

the problem, and Dr P. St J. Russell and Dr L. Solymar 
for helpful discussions. 
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Abstract 

The calculation of standard deviations for atomic 
coordinates in human deoxyhaemoglobin A on the 
basis of various reciprocal-space residuals has shown 
the resulting values to be in good agreement with each 
other. Evidence is presented that such calculations may 
be more reliable than is commonly accepted. It is also 
shown that Wilson's statistics may be applied success- 
fully to low- and high-angle protein diffraction data. 

Introduction 

It is usually assumed that the calculation of standard 
deviations of atomic coordinates in a model of a protein 
molecule is rather difficult. However, the knowledge of 
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its value may prove very helpful, for example in 
estimating the credibility of the orientation of a known 
protein molecule in an unknown crystal lattice, found 
using various molecular replacement techniques. 

It is interesting that various reciprocal-space 
residuals may serve both as correlation functions in 
rotation and translation function searches (Nixon & 
North, 1976) and as a basis of IArl evaluation 
(Luzzati, 1952; Parthasarathy & Parthasarathi, 1972; 
Nixon & North, 1976). Attention has also been paid to 
the physical interpretation of refinement based on the 
minimization of some of these residuals (Wilson, 1976). 

On the other hand, the search for the correct 
orientation of a protein molecule with the molecular 
replacement method was frequently based on a strictly 
mathematical assumption that a unique set of correct 
values of rotational and translational parameters 
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